XPath routing decisions within this node can use information gathered from a user-supplied database in addition to that which may be queried from the node â™ s incoming message assembly content. 本节点中的XPath路由决策除了可以使用从节点输入消息组件内容查询到的信息之外,还可以使用从用户提供的数据库中收集的信息。
However, this node should only be used when one or more routing decisions are required in which information is sourced from a database lookup. 但是,仅当需要其信息来自数据库查询的一个或多个路由决策时,才能使用该节点。
They are analogous to the end-node, router/ switch and routing table database in the Internet, respectively. 它们分别与端节点、路由器/交换机和因特网上路由表数据库相当。
Fatal Error: Could not add interface to routing database. 系统内存大小,无法增加接口发送数据。
Link-state routing algorithms maintain a complex database of topology information. 链路状态路由演算法维护一个复杂的拓朴资讯资料库。
The OSPF protocol is a dynamic routing protocol, which uses of the link state database to maintain and calculate routings. Its routing algorithm is the most important part. OSPF协议是一种动态路由协议,它利用内部的链路状态数据库来维护和计算路由,它的路由算法是本协议的关键部分。
Existing routing protocol implementations are monolithic, bundling together a database with an optimal path calculation algorithm and a network state distribution mechanism. 现有路由协议的实现是单一的,并且将数据库、最优路径计算和网络状态分发机制捆绑在一起。
On the other hand, it particularly discusses the elements of OSPF, such as LSA, link-state database, and routing calculation based on the database, and so on. 此外,重点剖析了OSPF的组成要素,如LSA、链路状态数据库以及用这些链路状态数据库进行路由选择计算等等。
It succeeded to resolve the updating of tens of thousands of routing table, the shaking of complex RPR topology database, high cost of hardware storage space and the spending problem of CPU. 成功地解决了数以10万计的路由表项的更新、复杂RPR拓扑库的震荡、高成本硬件存贮空间和CPU的开销问题。
Structured mining plays an important role in XML documents mining, web page traffic mining, analysis of molecular evolution, packet routing, biological informatics, biological computing, communication system, image database and city management. 结构数据挖掘在XML文档挖掘,网页流量挖掘,生物进化的分析,路由选择,生物信息学,生物计算,通讯系统,图像数据库,城镇规划等诸多领域发挥重要作用。
The simulation showed that the size of routing load and link state database ( LSDB) was rapidly decreased with the increase of routing layers. 结果表明,路由控制负载和链路状态数据库的大小都随着路由层数的增加而迅速地降低。
Lastly, we analyses the characteristic demand of radar networking to routing algorithm. Because the nodes bear lots of database package transmission function in scale-free network, it is possible to lead congestion. 最后,分析网络化作战系统对路由算法的性能要求,无尺度网络中由于其集散节点承担大量的数据包转发功能,很容易产生拥塞。
Data storage layer can be divided into two sub-layers: data routing platform layer and database infrastructure layer. 数据存储层可以分为两个子层:数据路由平台层和数据库基础设施层。